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To study the influence of polarization on the form of the workpiece, a method of transformation
of the interelectrode space to a rectangle (for a two-dimensional system) was proposed. The
potentials in this region were calculated by the superrelaxation method. The results of the cal-
culation show a pronounced effect of polarization on the final form of the workpiece in comparison
with an analogous calculation involving no electrode polarization. The Joule heat evolved in the
streaming electrolyte and gas bubbles formed during electrolysis have also a pronounced in-
fluence on the course of the machining process.

In proposing tools for electrochemical machining, either approximate methods! ™3

or the solution of Laplace’s equation in the interelectrode space* are used. Owing
to difficulties encountered in solving these problems, nonpolarizable electrodes
are usually assumed. The present work deals with calculations for a practical case
of machining to show the changes in the form of the workpiece resulting from heating
of the electrolyte, bubble formation, and electrode polarization in comparison with
the case where only polarization of the electrodes under isothermal conditions is
considered.

!

Formulation of the Problem

During electrochemical machining with direct current, the form of the cathode does
not change while the anode dissolves gradually and its form changes. We shall con-
sider the two-dimensional case where the cathode is planar with a triangular projec-
tion. The simulation of machining, i.e., of the gradual formation of a replica of this
projection on the anode surface can be represented by the following sequence of cal-
culations: 1) We calculate the potential distribution in the space (surface) delimited
by the cathode and anode, i.e., by the curves o(x) and f(x), by solving Laplace’s

* Part XV in the series Flow Electrolyzers; Part XIV: This Journal 45, 1456 (1980).
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1868 Novék, Rousar, Kimla, Cezner, Mejta :

equation. 2) We calculate the local current densities on the anode and on the cathode.
3) We calculate the loss of the metal due to electrochemical dissolution in a point,
x, during a time interval, At, using Faraday’s law. We take into account the eventual
oxygen evolution on the anode. From the loss of the metal, we calculate the shift
of the coordinates of the curve describing the shape of the anode, and this in the direc-
tion normal to its surface. At the same time, we assume that the cathode was shifted
toward the anode during the time At by a step Ay. If Az is sufficiently small, we come
close to the real course of the machining. These calculations lead to a new form of the
anode surface. 4) We express the new form of the anode surface in the form of a table
of mutually corresponding coordinate pairs (x;, y;), i = 1,2,..., N, where N is the
number of nodal points on the anode surface. 5) We rerurn to step /). If the coordina-
tes determining the form of the anode. i.e. f(x), do not change any more with time,
the stationary state is attained and the calculation is stopped.

In the case of the method of finite differences with time-independent values of the
coordinates in the grid points, we should examine the position of the points on the
boundary and the distances of the individual points from the actual interface. Since
this method of calculating the potentials on the contour of the anode and the pro-
gramming would be very complicated, it is preferable to use more complex relations
for the calculation of the potential values in the interelectrode space, but to preserve
the simple relations for the calculation of the potential values on the boundary
regardless of the changes of its form. These conditions can be fulfilled by using a trans-
formation of the space region delimited by the curves y = f(x) and y = «(x) to
a rectangle. °

Transformation of the Interelectrode Region to a Rectangle

Since the properties of the system do not change along the z axis, the sought poten-
tial ¢ is described by the partial differential equation

o e 1 down 0o _
ox*  dy? ome dx Ox '

0

The derivation of this equation is given in the Appendix. It is to be solved in the
region delimited by the curves

x=a, X=b, y=d(X), y=ﬁ(x)~

The transformation is illustrated in Fig. 1. We shall introduce the following curvi-
linear coordinates:

E=x n=(y—ox)J(Ax) ~ «x)), 2.0
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Method of Transformation of the Interelectrode Space to a Rectangle

where &€ (a; b), ne{0;1). The the potential ¢(x, y) is transformed to ¥(&,

and the Laplace’s equation is transformed into the form

2 2 -
P - Shrn - Lren-Yaw=0. ®
n o¢

—_— + ——
et on? 8¢ dn
where
(&on) = [8&) = O] 2 [1 + () (1 = n) + B(E) )] )
Fa(&om) = 2[B(&) — o] [ () (1 = n) + B(E)n] (6)
Fa(&,n) = [BE) — a(&)] 2 [(BE) — «(&) (1 = m)a'(¢) +
+ (B&) — &) n B(2) — 2B (&) = «(8))-
(@) (L= n) + B(E)n)]. ()
C ) -G
60 = 5 " “O=, (®).(9)
ey _ 428 dB(E) d?(¢)
()= 5 po =02 po =T vo.0n.0)
A(x) 1
Y
| atx) ;
Pa —x b OP a —¢ b

FiG. 1
Transformation of the Region Delimited by Curves a(x) and B(x) to a Rectangle
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The boundary conditions for Eq. (4) are:

E=a or ¢=b: =0, (13)
i.e., the planes ¢ = a and ¢ = b are symmetrical, or no current flows out from the
space between the electrodes.

The potential in the electrolyte at the anode or cathode surface can be determined
from the definition of the electrode potential:

Ep = Qma — @sa + const., Eg = @nx — ¢, + const.  (14),(15)
Since the constants are related to the choice of the reference electrode, they can be

set equal to zero. For the same reason, we can set ¢, x = 0, but then ¢, 4 is equal
to the terminal voltage, U, of the electrolyser. Then

II’A =U - EA(in.A) > kI/x = “Ex(in.x) > (16)‘ (17)

where U > 0. The dependence of the electrode potentials E, and Ex on the current
density i is given by the Tafel equation; hence

Yp=U - Er,A —a,— b,ln inAs (18)
Y = —E.x + ag + by ln |igx - (19) -~

These expressions are simplified in the region close to the equilibrium potential
E, s or E_ as follows:

a=U—Ea—ioafks, Vx=—Ex + |inx|/k- (20), (21)
The linearized expressions (20) and (2I) are used for low current densities defined as
ina < exp[(ba — an)[bal, |iax| < exp[(bx — ak)fbx]. (22),(23)

Eqs (/8) and (19) serve for higher current densities. The constants k, and ky are
given as

ka = bitexp [(ba — au)fba], kx = by exp [(bx — ax)fbx] . (24),(29)
The current densities at the surface of the anode (f(x)) and cathode («(x)) are given as

lin| = Q;(l|(grad (p)nl s (26)
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where the potential gradient for the cathode is

T VAR S I AR
(grad @)k = (1 + o) [(a’,)c B—a (05),, a:l »

and for the anode

Since the anodic current density is considered positive and the cathodic one negative,
the normal components of the gradients must be provided with the corresponding

sign, which depends on the choice of the normal direction.
The specific resistance gy of the bubble-electrolyte mixture is given by the equation

om(x) = ee(x) [1 + 1:5Vg(x)[Ve], (29)

where the volume flow of the gaseous phase is given as

- [ (it 2 s i 2e) I+ P 0

w nex ng.a) FP(x)
We shall consider the flow of electrolyte in the direction of the x axis and we shall

assume that the heat transfer into the bubble during its passage through the system
is negligible. The flow line y(x) is defined as

(%) = Ha(x) + A(x)). €))]
The dependence of the specific resistance gg on the temperature can be expressed as
O = Qg[l +6,(T— To) +65(T— To)z + 85(T - To)g] . (32)
The temperature in any point of the system is determined by the energy balance:
w * . ,
T = To + g [ o) ) (600 — o) = [1 + (BT
VeSeCor Ja
ha(x) (T(x) = T) = dergo(T(x) = Ti) [1 + (o/(x))?]"2} dx . (33)

Here we neglect the enthalpy change due to electrode reactions. The mean current
density i, x is defined as

sk = 3ina + |in,K|) . (39)
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From Eqs (29)—(34) we obtain

dQM( x)
dx

=W QE(X)

(a0 222 4 10 2o,

s
Ve G.K ng.a) FP(x)

0+ G g (1 15 750 ot 4 2a(r) - 7 +
VeSe pE Ve
+ 305(T(x) — To)*] [m(x) a x(x) (B(x) = x)) = k() (T(x) = Tn) -
U+ (BT = k() (T(x) = T) [T+ ()] (39)
(The primes denote differentiation with respect to x.) The heat transfer is calculated
with the use of equations valid for a fully developed turbulent profile, so that in our

case, where the cross section changes along the flow line, the values are subject
to some error.

The coefficient of heat transfer ky is calculated from the definition of the Nusselt’s
criterion:

Nu(x) = k(x) d(x)[4 . (36)

The equivalent diameter d, is defined as

d, = 24fw, 67

where the cross-sectional area of flow, A4, is approximated as

A = w(Bx) = a(x)][L + ((x))*]"2. (39)
The Nusselt’s criterion is given by the equation
Nu(x) = 0-023 Re®(x) Pro4(x) , (39)
where
Re(x) = 2VeSg/w u(x), Pr(x) = C, u(x)[%. (40), (41)

Eq. (39) holds in the turbulent region, but is can be used in the case of a channel
of changing form as a first approximation if the Reynolds number is larger than
1000. The dependence of the viscosity on the temperature is given by the approximate
equation®

0g(x)[u(x) = const. (42)
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The density of the electrolyte, S, its specific heat capacity, C,g, and thermal con-
ductivity will be considered constant. The pressure as a funxtion of x is calculated
from the equation

P(x) = PO — f T_031648(1 — J(x)) ( Ve )2 [t + GO

(), wW(B(x) = a(x))) 21— S

Rep*(x) (B(x) — a(x))

(43)
where®

Rey(x) = Re(x) (1 — f(x))**, f(x) = Vo(x)[(Ve + Va(x)). (44), (45)

Since it is not possible to express the temperature and pressure explicitly from the
above equations, we proceed by iteration so that we calculate alternately the pres-
sure and the temperature using the equations

PS*(x) = C, PN(x) + (1 — C,) PS(x), (46)
T (x) = € THx) + (1 = C5) T*(x), (47)

where Cy, C, € (0-1; 0:3).

If we solve the Laplace’s equation in the region corresponding to the interelectrode
space, we must correct the potentials at the boundaries in order that they correspond
to Eqs (/8)—(21). We therefore calculate the local current densities from Eq. (26)
and iterate in turn the potentials , and Yy until Eqs (18)—(2/) and (26) are ful-
filled. A preferred iteration procedure uses, e.g., for the anode the relation

V/SAH = C, l/’m + (1 - Ca) ‘/’i 5 (48)

where Cy € <0:001; 0:05), i/} is the past value of the potential, and y/} is the potential
value calculated by substituting the corresponding current density into Eqs (18)—(21).
To speed up the convergence, we correct the local current densities in the following
way: we calculate the total currents for the anode and cathode

I = J‘biN_AU + (B)] dx, (49)
Ig = J"’;-N,K[l + ()] dx. (50)

Now we define
Is = (I, + Iy) (51
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and we multiply the current densities calculated from Eq. (26) by the ratio IsfI, or
Ig[Ix. These corrections are unimportant at the end of the calculation, when I, = Iy.

To ensure the convergence of the potentials in the interelectrode region, we take
only a certain fraction of the newly calculated potentials y, and y:

YR = ok + (1 = Ca i, (2)

where C, € (0-4; 1-0) and ¢ is the anode potential from the past calculation. The
calculation of the potentials on the boundaries is carried out after 5—20 iterations
within the field. Similarly the new values of the specific resistance are calculated from
Eq. (29) after 5—20 iterations within the field. A direct calculation of the potentials
on the boundary from Eqs (20) and (21) is possible in the region of low current densi-
ties, however even here we prefer the iterative calculation since the algorithm of the
computational procedure becomes simpler.

After attaining the required accuracy of the potentials (both in the field and on the
boundaries), temperatures and pressures, we consider a change of the form of the
anode. We assume that the current densities on the electrode surface do not change
during a small time interval Ar, so that it is possible to calculate the shift rate of the
anode in the direction of the normal, An, as

An = i, \Mpy[nFS, , (53)

where p, denotes current yield for the anodic metal dissolution according to the ™ -
reaction
Me = Me"* + ne. (54)
i=1,7+10
(x"y" AX
aY i1
Nix) 1 ?
(x,y) T
i-1,j-1
FiG. 2 FiGc. 3
Shift of Coordinates of a Point (X, ¥) on the Grid of Points and their Notation

Anode Surface f(x) During a Time At into
a Point (XN, YY)
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If we denote the coordinates of a point on the anode surface as X, Y, where Y = f(x),
then the coordinates X, YN after the anodic dissolution for a time interval At
will be (Fig. 2)

XN=X - AX, YN=7Y+AY, (55), (56)

where
AX = An 1+ (B2 Ac, (57)
AY = (An[L + (B)?]* = u,) Ac. (58)

In the latter equation we assume that the anode moves at a velocity v, against the
cathode, which is fixed.

By performing the calculation for all points on the curve f(x), we obtain the values
of BN(X™), which must be recalculated for the original X values corresponding to the
nodal points. This was done by quadratic interpolation.

The values of At must be relatively small to make the changes in the electrode
shape also small; thus the error of the calculation is maintained small. The described
method of calculation of new values of ﬂ(x) corresponds to the Euler’s integration
method. By choosing a large velocity of the electrode shift v, we can simulate the
situation when the electrodes come into contact similarly as in practice.

06 T T T T —
=0

FiG. 4

Graphical Representation of Machining
without Regard to Polarization, Temperature
and Bubble Effects

Time 7 in s.

F1G. 5

Graphical Representation of Machining with
Regard to the Polarization but not to the
Temperature and Bubble Effects

Time 7 in s.
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Approximation of the Derivatives by Difference Formulas

We shall consider a two-dimensional grid with an unequal spacing (Fig. 3), in which
it is possible to approximate the derivatives by difference formulas with an error
of 0(h?) or 0O(k?):

(‘_31) _ f(i+1)h<2i—n + f(l)(h(zi) - h(zi‘l)) - f{i—l)h(zi) (59)

0t/ heiyhii— (hay + ha-y)

(gz_f) _ Jusnha-n — Sehy + hi-n) + fa-nhe (60)
& )iy 0-5hei— yhey(h- 1y + hey)

(52f> _ o) |: Ja-1-vke Tooin kg = kG- _
=1,
0t on)iy  ha-pfhi-1y + he) Lkg- (kg + kg-1) ki~ 1k

_ Ja-rg+nke-n ] + hay — hi-yy [_ Jig-vkg
kay(kg-1y + k) heyhi- 1y k- aki- 1+ k)

+ f('J) k(l) - k(]-l) + f(h.i*l)k(J‘l) :| + h(l-l) )
' k(J)kU‘I) k(i)(k(l'l) + k(J)) h(i)(h(i-l) + h(i))

_pk k - i1+ kG
A[_ _f(H'l.J DD +f(i+1‘j) (6)] 9] + f(.+1,,+1) (J—l)]. (61)

k(l* 1)(k(l~' nt k(i)) k(J)k(J’— n k(j)(k(l‘ n+ k(.i)

FiG. 6

Graphical Representation of Machining with Regard to the Polarization, Temperature, and
Bubble Effects
Time 7 in s. Electrolyte flows from left to right.
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For the boundaries, asymmetrical formulas are used: if the values in the points i + 1
and i + 2 are known, we use the formula

(a_f> = Uasn = o) (hiy + haans) = Jieay = f) by (62)
ot /; hesheis y(hiy + hisny)
and if the values in the points i — 1 and i — 2 are known, we have
(g) - (f(i—/i)‘_ f(i)) h(zi—l) — (f(i—itf»/(i)),({'(i—zj +ﬁﬂﬁ)ﬁ (63)
0t /; h(i—l)h(l—z)(h(l—l) + hoay)

Eqs (62) and (63) are needed in calculating the potential gradients at the electrode
surface.
The iterative calculation of the potential in a given point is carried out by the
relaxation method, i.e., according to
S+1 s s
an = VYap + ranRa - (64)
The superscripts S and S + 1 denote the iteration series. The values of Rfi.,) are

calculated by introducing the S-th potential values into the left side of Eq. (4) where
the derivatives were replaced by the corresponding difference formulas (59)—(61).

TaBLE I
Values of Constants for the Simulation of Machining

Variant A B (o}
7% 10-000 10-000 14-114
E, o (V) 11 11 11
E.x (V) 0-0 00 00
ay (V) 0 —01526  —0-1526
by (V) 0 0-06 0-06
ag (V) 0 —0:0526  —0:0526
b (V) 0 0-06 0-06
0% (1072Qm) 20 2:0 2:0
P 10 1-0 1-0
PG.x 0 0 1
PG,A 0 0 0
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The convergence of the potentials y5*! was achieved by the following choice of the
relaxation factor r(; ;)

raly =202+ 2F (& )| k72 + W7k (G )| + kT FS(E )| +
+ h7HG(E) (65)

where h denotes Min (h;, h;_,) and k = Min (kj, k;_,). By this choice of the relaxa-
tion coefficient, the row norm of the coefficient matrix of the solved system of dif-
ferential equations is minimized, thus ensuring convergence of the values of .

RESULTS

The calculations were carried out for the case of the formation of a depression in the
anode, the cathode being plate-shaped with a projection in the form of a triangle
(Figs 4—6). Three variants were considered: A) calculation without considering
polarization, electrolyte temperature and dissipated bubbles; B) calculation taking
into account polarization, but not the temperature and bubbles; C) calculation taking
into account all the mentioned effects.

The constants used in simulating the machining are given in Table 1. The initial
electrode distance was-0-55 cm, in the place of the projection only 0-05 cm. The shift

TasLE 11

Profile of Anode and Current Distributions on Anode and Cathode in Stationary State for
Variants 4 and B

A B

i —ig B(x) iy —ix
1072m  10*A/m?*  10*A/m?  1072m  10*A/m?  10* A/m?

0-000 0-0633 73-4 68-7 0-0520 73:4 71-2

0-093 0-0723 68-5 60-3 0:0569 70-8 64-8
0178 0-1299 47-4 36:1 0-1005 49-6 40-1
0-255 0-2581 379 18-7 0-2276 369 19-5
0-326 0-3747 417 371 0-3539 39-5 365
0-389 0-4536 499 41-4 0-4398 474 400
0-447 0-5057 59-8 452 04977 574 44-1
0-500 0-5324 734 294-8 0-5282 73-4 262-1°
“ Peak.
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Method of Transformation of the Interelectrode Space to a Rectangle 1879

rate of the anode with respect to the cathode was 0-0027 cm/s. The mean current
density was 700—750 kA/mZ for cases 4 and B and 50—750 kA/m? for case C:
At = 4. For the case C, the temperature ol both electrodes and clectrolyte at the
inlet was 20°C, the volume rate of flow of electrolyte referred to unit width Vn/w =
= 5.107*m?[s. The constants in Eq. (32) were §, = —1-891.107% 3, = 2:155.
1074, 8y = 1:086.107°,

The stationary profile of the anode was attained with an error less than 19 in all
points at a time: A —334s, B —360s, C —324s. The calculated current densities
on the surface of the electrodes are given in Tables 11 and 1Il. For cases A4 and B,
the current distribution and the shape of the anode are symmetrical about the peak.
In case C, the increasing temperaturce of the electrolyte is manifested by an increase
of the width of the equilibrium slot and an influence on the current density (Table 111).
The time dependences of the mean current density, electrolyte temperature at the
outlet, and of the pressure loss for this case are given in Table IV.

The equilibrium slot width in the place of the peak was 0-0324, 0-0282, and
0-0485 cm in cases 4, B, and C, respectively. The equilibrium slot width in the place
most distant from the peak was in case 4 0:0633 cm, B 0:0520 cm, and C 0-0945 cm
at the electrolyte inlet and 0-1678 cm at the outlet. The course of the machining
for the mentioned cases is shown in Figs 4 —6.

TasLe [11

Profile of Anode, Current Distributions on Anode and Cathode and Elcctrolyte Temperatures
in Stationary State for Variant C

X, 1072 m B, 1072 m iy, 10* A/m?  —iy, 10* A/m? 1,°C

0-000 0-0945 733 563 20:0
0-093 0-1225 607 486 233
0-178 0-2126 44-4 299 258
0-255 0-3332 417 181 27-8
0-326 0-4278 477 39-1 302
0-389 0-4907 562 469 330
0-447 0-5300 651 517 353
0:500 0-5485 733 407-2 41-7°
0-553 0-5350 67-9 50-7 48:0
0611 0-5024 60-2 463 50-2
0674 0-4501 531 375 52-8
0-745 0-2736 479 16-3 55-0
0-822 02785 49-5 258 569
0907 01974 617 389 593
1-:000 0-1678 732 45-1 62-3
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The results show that the equilibrium slot is at the sloped wall of the projection
larger than in the place where the parallel walls of the electrodes approach each
other. In case C, the equilibrium slot width becomes larger with increasing tempera-
ture along the line of flow. Polarization of the electrodes makes the current distribu-
tion more equal which is undesirable. As a result, the anode-cathode distance
in the place of the peak of the projection becomes smaller.

Remarks to Simulation Program

The method of calculation of changes of the anode shape is relatively rapid, the computer time
for the calculation of a variant for a given time 7 being 10—30 s on an 1CL-4-72 type computer,
195 points in the grid, cases A4 and B. For case C, the calculation of a variant lasted for 5—90s,
10 s on the average. A |5 X 13 grid was used in all cases.

The program enables to propose the form of the cathode (tool) neccssary to achieve the desired
shape of the anode (workpiece) in two dimensions. It has to be stressed that a mecasurement
of polarization curves in the region of the working current densities for both electrodes including
the anodic current yield is necessary. Approximate calculations neglecting the polarization
have only an informative character.

Appendix — Derivation of Eq. (/)
The following equation holds in all points of the interelectrode space:
divi=0. (Al
The local current density is defined as
i=—g§,lgradw. (AZ-; :

We assume that the specific resistance gy of the bubble-electrolyte mixture is a function only
of the coordinate x. By substituting Eq. (42) into (47) and after rearrangement we arrive at the
Laplace’s cquation (/).

TasLE IV

Dependence of Mean Current Density i, Electrolyte Temperature at Outlet, and Pressure Loss
Py — Pin the Electrolyser on the Duration of Machining

7,8 i, 10* A/m? 1,°C Py — P, kPa
0 29-9 39-6 40

20 33:0 41-7 4-4

60 411 46'5 60

120 516 520 69

180 60-1 561 71

® 733 62:3 77

Collection Czechoslov. Chem. Commun. [Vol. 45] [1980]



Method of Translormation of the Interelectrode Space to a Rectangle

1881

LIST OF SYMBOLS

a, b

A
C
Cor

L

i R P

Rey
Sa Se

Tar Tk
U

constants of the Tafel equation, V
cross-sectional area of flow, m?

constants
specific heat capacity of clectrolyte,  J/kg K
equivalent diameter, m

potential, V

Faraday's constant, 96487 C/mol

functions, i == 13, Egs (5)--(7)

functions, Eqgs (45) and (8)

distance between grid points in the x direction

current density, A/mZ

total current, A

constants, Eqs (24) and (25)

distance between grid points in the y direction

heat transfer coefficient, W/m? K

molar mass of the anode metal, kg/mol

number of clectrons exchangzd in anodic dissolution
number of clectrons exchanged in gas evolution

shift rate of the anode surface in normal direction, m/s
Nusselt's criterion

absolute pressure of electrolyte, Pa

current yield in the gas evolution

current yicld in the anode dissolution

Prandtl’s criterion

universal gas constant, J/mol K

relaxation factor

Reynolds’ criterion

corrected value of Re, Eq. (44)

density of the anode metal and of the electrolyte, kg/mJ
absolute temperature of the electrolyte, K

absolute temperatures of the anode or cathode surface, K
terminal voltage of the electrolyser, V

shift rate of the anode against the cathode, m/s
volume rates of flow of electrolyte and gascous phase, ml/s
channel width, m

space coordinates, m

curves expressing the shape of the cathode and anode
stream line, Eq. (37)

i= 1—3, constants in Eq. (34)

coordinates

heat conductivity of the electrolyte, W/m K

dynamic viscosity of the electrolyte, kg/m's

specific resistances of the electrolyte and gas emulsion, Qm
time, s

potential, V

potential, V
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Subscripts or Superscripts

A anode

K cathode

n normal component

N new value in the iterations
o valuc in the point x = a

r cquilibrium value

q,s denotation of iterations

s mean value
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